EconPapers    
Economics at your fingertips  
 

Approximate Osher–Solomon schemes for hyperbolic systems

Manuel J. Castro, José M. Gallardo and Antonio Marquina

Applied Mathematics and Computation, 2016, vol. 272, issue P2, 347-368

Abstract: This paper is concerned with a new kind of Riemann solvers for hyperbolic systems, which can be applied both in the conservative and nonconservative cases. In particular, the proposed schemes constitute a simple version of the classical Osher–Solomon Riemann solver, and extend in some sense the schemes proposed in Dumbser and Toro (2011) [19,20]. The viscosity matrix of the numerical flux is constructed as a linear combination of functional evaluations of the Jacobian of the flux at several quadrature points. Some families of functions have been proposed to this end: Chebyshev polynomials and rational-type functions. Our schemes have been tested with different initial value Riemann problems for ideal gas dynamics, magnetohydrodynamics and multilayer shallow water equations. The numerical tests indicate that the proposed schemes are robust, stable and accurate with a satisfactory time step restriction, and provide an efficient alternative for approximating time-dependent solutions in which the spectral decomposition is computationally expensive.

Keywords: Hyperbolic systems; Incomplete Riemann solvers; Osher–Solomon method; Euler equations; Ideal magnetohydrodynamics; Multilayer shallow water equations (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315008851
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:272:y:2016:i:p2:p:347-368

DOI: 10.1016/j.amc.2015.06.104

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:272:y:2016:i:p2:p:347-368