EconPapers    
Economics at your fingertips  
 

A computational study of three numerical methods for some advection-diffusion problems

A.R. Appadu, J.K. Djoko and H.H. Gidey

Applied Mathematics and Computation, 2016, vol. 272, issue P3, 629-647

Abstract: Three numerical methods have been used to solve two problems described by advection-diffusion equations with specified initial and boundary conditions. The methods used are the third order upwind scheme [5], fourth order upwind scheme [5] and non-standard finite difference scheme (NSFD) [10]. We considered two test problems. The first test problem we considered has steep boundary layers near x = 1 and this is challenging problem as many schemes are plagued by non-physical oscillation near steep boundaries [16]. Many methods suffer from computational noise when modeling the second test problem. We compute some errors, namely L2 and L∞ errors, dissipation and dispersion errors, total variation and the total mean square error for both problems. We then use an optimization technique [1] to find the optimal value of the time step at a given value of the spatial step which minimizes the dispersion error and this is validated by numerical experiments.

Keywords: Dispersion; Dissipation; Total variation; Oscillations; Advection-diffusion; Optimization (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315004154
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:272:y:2016:i:p3:p:629-647

DOI: 10.1016/j.amc.2015.03.101

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:272:y:2016:i:p3:p:629-647