Explicit relation between the Wiener index and the edge-Wiener index of the catacondensed hexagonal systems
Ailian Chen,
Xianzhu Xiong and
Fenggen Lin
Applied Mathematics and Computation, 2016, vol. 273, issue C, 1100-1106
Abstract:
The Wiener index W(G) and the edge-Wiener index We(G) of a graph G are defined as the sum of all distances between pairs of vertices in a graph G and the sum of all distances between pairs of edges in G, respectively. The Wiener index, due to its correlation with a large number of physico-chemical properties of organic molecules and its interesting and non-trivial mathematical properties, has been extensively studied in both theoretical and chemical literature. The edge-Wiener index of G is nothing but the Wiener index of the line graph of G. The concept of line graph has been found various applications in chemical research. In this paper, we show that if G is a catacondensed hexagonal system with h hexagons and has t linear segments S1,S2,…,St of lengths l(Si)=li(1≤i≤t), then We(G)=2516W(G)+116(120h2+94h+29)−14∑i=1t(li−1)2. Our main result reduces the problems on the edge-Wiener index to those on the Wiener index in the catacondensed hexagonal systems, which makes the former ones easier.
Keywords: Wiener index; Edge-Wiener index; Catacondensed hexagonal system; Line graph (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315014149
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:273:y:2016:i:c:p:1100-1106
DOI: 10.1016/j.amc.2015.10.063
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().