EconPapers    
Economics at your fingertips  
 

Superconvergence and a posteriori error estimates of splitting positive definite mixed finite element methods for elliptic optimal control problems

Tianliang Hou and Li Li

Applied Mathematics and Computation, 2016, vol. 273, issue C, 1196-1207

Abstract: In this paper, we investigate superconvergence and a posteriori error estimates of splitting positive definite mixed finite element methods for elliptic optimal control problems. The presented scheme is independent symmetric and positive definite for the state variables and the adjoint state variables. Moreover, the matching relation (i.e., LBB-condition) between the mixed element spaces Vh and Wh is not necessary, thus, we can choose the approximation spaces more flexibly. In order to derive the superconvergence, we will use classical mixed finite element spaces. The state and co-state are approximated by the lowest order Raviart–Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. At first, we derive some superconvergence properties for the control variable, the state variables and the adjoint state variables. Then, using a recovery operator, we obtain a superconvergence result for the control variable. Next, combining energy approach with postprocessing method, we derive a posteriori error estimates for optimal control problems. We will show that the method does not involve the jump residuals which make the analysis simpler. Finally, a numerical example is given to demonstrate the theoretical results on superconvergence.

Keywords: Elliptic equations; Optimal control problems; Superconvergence; A posteriori error estimates; Splitting positive definite mixed finite element methods (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315012072
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:273:y:2016:i:c:p:1196-1207

DOI: 10.1016/j.amc.2015.08.126

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:1196-1207