An alternative approach to study nonlinear inviscid flow over arbitrary bottom topography
Srikumar Panda,
S.C. Martha and
A. Chakrabarti
Applied Mathematics and Computation, 2016, vol. 273, issue C, 165-177
Abstract:
This paper deals with a new approach to study the nonlinear inviscid flow over arbitrary bottom topography. The problem is formulated as a nonlinear boundary value problem which is reduced to a Dirichlet problem using certain transformations. The Dirichlet problem is solved by applying Plemelj–Sokhotski formulae and it is noticed that the solution of the Dirichlet problem depends on the solution of a coupled Fredholm integral equation of the second kind. These integral equations are solved numerically by using a modified method. The free-surface profile which is unknown at the outset is determined. Different kinds of bottom topographies are considered here to study the influence of bottom topography on the free-surface profile. The effects of the Froude number and the arbitrary bottom topography on the free-surface profile are demonstrated in graphical forms for the subcritical flow. Further, the nonlinear results are validated with the results available in the literature and compared with the results obtained by using linear theory.
Keywords: Integral equation; Dirichlet problem; Nonlinear theory; Inviscid flow (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315013247
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:273:y:2016:i:c:p:165-177
DOI: 10.1016/j.amc.2015.09.086
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().