EconPapers    
Economics at your fingertips  
 

Extremal values of matching energies of one class of graphs

Lin Chen and Jinfeng Liu

Applied Mathematics and Computation, 2016, vol. 273, issue C, 976-992

Abstract: In 1978, Gutman proposed the concept of graph energy, defined as the sum of the absolute values of eigenvalues of the adjacency matrix of a molecular graph, which is related to the energy of π-electrons in conjugated hydrocarbons. Recently, Gutman and Wagner proposed the concept of matching energy and pointed out that the chemical applications of matching energy go back to the 1970s. In this paper, we study the extremal values of the matching energy and characterize the graphs with minimal matching energy among all tricyclic graphs with a given diameter. Our methods can help to find more extremal values for other classes of molecular networks and the results suggest the structures with extremal energies.

Keywords: Topological indices; Matching energy; Tricyclic graphs; Diameter; Extremal values; Graph energy (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315013673
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:273:y:2016:i:c:p:976-992

DOI: 10.1016/j.amc.2015.10.025

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:976-992