EconPapers    
Economics at your fingertips  
 

A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach

Xiao-Jun Yang, J.A. Tenreiro Machado and H.M. Srivastava

Applied Mathematics and Computation, 2016, vol. 274, issue C, 143-151

Abstract: In this article, we first propose a new numerical technique based upon a certain two-dimensional extended differential transform via local fractional derivatives and derive its associated basic theorems and properties. One example of testing the local fractional diffusion equation is then considered. The numerical result presented here illustrates the efficiency and accuracy of the proposed computational technique in order to solve the partial differential equations involving local fractional derivatives.

Keywords: Numerical solution; Extended differential transform method; Diffusion equation; Local fractional derivatives; Partial differential equations (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031501423X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:274:y:2016:i:c:p:143-151

DOI: 10.1016/j.amc.2015.10.072

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:274:y:2016:i:c:p:143-151