EconPapers    
Economics at your fingertips  
 

A class of efficient quadrature-based predictor–corrector methods for solving nonlinear systems

Cory L. Howk

Applied Mathematics and Computation, 2016, vol. 276, issue C, 394-406

Abstract: We extend a class of quadrature-based predictor–corrector techniques for root-finding to multivariate systems. They are found to have a rate of convergence of 1+2 regardless of the degree of precision for the quadrature technique from which they are derived, provided it is at least one. By reusing the linear system from the previous iterate, this class incorporates a significant improvement in computational time relative to the standard class through the inclusion of an LU-decomposition during the iteration. Complexity is equivalent to Newton’s Method, as they only require knowledge of F(x) and F′(x).

Keywords: Root-finding; Noninteger convergence; Nonlinear systems; Quasi-Newton Method; Quadrature-based technique (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315300205
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:276:y:2016:i:c:p:394-406

DOI: 10.1016/j.amc.2015.12.032

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:394-406