EconPapers    
Economics at your fingertips  
 

Open quipus with the same Wiener index as their quadratic line graph

M. Ghebleh, A. Kanso and D. Stevanović

Applied Mathematics and Computation, 2016, vol. 281, issue C, 130-136

Abstract: An open quipu is a tree constructed by attaching a pendant path to every internal vertex of a path. We show that the graph equation W(L2(T))=W(T) has infinitely many non-homeomorphic solutions among open quipus. Here W(G) and L(G) denote the Wiener index and the line graph of G respectively. This gives a positive answer to the 2004 problem of Dobrynin and Mel’nikov on the existence of solutions with arbitrarily large number of arbitrarily long pendant paths, and disproves the 2014 conjecture of Knor and Škrekovski.

Keywords: Wiener index; Iterated line graph; Graph equation; Tree (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316300406
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:281:y:2016:i:c:p:130-136

DOI: 10.1016/j.amc.2016.01.040

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-17
Handle: RePEc:eee:apmaco:v:281:y:2016:i:c:p:130-136