EconPapers    
Economics at your fingertips  
 

Linear least squares problems involving fixed knots polynomial splines and their singularity study

Z. Roshan Zamir and N. Sukhorukova

Applied Mathematics and Computation, 2016, vol. 282, issue C, 204-215

Abstract: In this paper, we study a class of approximation problems appearing in data approximation and signal processing. The approximations are constructed as combinations of polynomial splines (piecewise polynomials) whose parameters are subject to optimisation and so called prototype functions whose choice is based on the application rather than optimisation. We investigate two types of models, namely Model 1 and Model 2 in order to analyse the singularity of their system matrices. The main difference between these two models is that in Model 2, the signal is shifted vertically (signal biasing) by a polynomial spline function. The corresponding optimisation problems can be formulated as Linear Least Squares Problems (LLSPs). If the system matrix is non-singular, then, the corresponding problem can be solved inexpensively and efficiently, while for singular cases, slower (but more robust) methods have to be used. To choose a better suited method for solving the corresponding LLSPs we have developed a singularity verification rule. In this paper, we develop necessary and sufficient conditions for non-singularity of Model 1 and sufficient conditions for non-singularity of Model 2. These conditions can be verified much faster than the direct singularity verification of the system matrices. Therefore, the algorithm efficiency can be improved by choosing a suitable method for solving the corresponding LLSPs.

Keywords: Signal approximation; Polynomial splines; Convex optimisation; Linear least squares problems; Non-singularity analysis (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031630114X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:282:y:2016:i:c:p:204-215

DOI: 10.1016/j.amc.2016.02.011

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:282:y:2016:i:c:p:204-215