EconPapers    
Economics at your fingertips  
 

A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points

Young Hee Geum, Young Ik Kim and Beny Neta

Applied Mathematics and Computation, 2016, vol. 283, issue C, 120-140

Abstract: A class of three-point sixth-order multiple-root finders and the dynamics behind their extraneous fixed points are investigated by extending modified Newton-like methods with the introduction of the multivariate weight functions in the intermediate steps. The multivariate weight functions dependent on function-to-function ratios play a key role in constructing higher-order iterative methods. Extensive investigation of extraneous fixed points of the proposed iterative methods is carried out for the study of the dynamics associated with corresponding basins of attraction. Numerical experiments applied to a number of test equations strongly support the underlying theory pursued in this paper. Relevant dynamics of the proposed methods is well presented with a variety of illustrative basins of attraction applied to various test polynomials.

Keywords: Multiple-zero finder; Extraneous fixed point; Modified Newton’s method; Basins of attraction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316301400
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:283:y:2016:i:c:p:120-140

DOI: 10.1016/j.amc.2016.02.029

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:283:y:2016:i:c:p:120-140