Rotations in discrete Clifford analysis
H. De Ridder,
T. Raeymaekers and
F. Sommen
Applied Mathematics and Computation, 2016, vol. 285, issue C, 114-140
Abstract:
The Laplace and Dirac operators are rotation invariant operators which can be neatly expressed in (continuous) Euclidean Clifford analysis. In this paper, we consider the discrete counterparts of these operators, i.e. the discrete Laplacian Δ or star-Laplacian and the discrete Dirac operator ∂. We explicitly construct rotations operators for both of these differential operators (denoted by Ωa, b and dR(ea, b) respectively) in the discrete Clifford analysis setting. The operators Ωa, b satisfy the defining relations for so(m,C) and they are endomorphisms of the space Hk of k-homogeneous (discrete) harmonic polynomials, hence expressing Hk as a finite-dimensional so(m,C)-representation. Furthermore, the space Mk of (discrete) k-homogeneous monogenic polynomials can likewise be expressed as so(m,C)-representation by means of the operators dR(ea, b). We will also consider rotations of discrete harmonic (resp. monogenic) distributions, in particular point-distributions, which will allow us to evaluate functions in a rotated point. To make the discrete rotations more visual, we explicitly calculate the rotation of general point-distributions in two dimensions, showing the behavior of such discrete rotations in relation to the continuous case.
Keywords: Discrete Clifford analysis; Rotations; Harmonic functions; Monogenic functions; Orthogonal Lie algebra (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316302272
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:285:y:2016:i:c:p:114-140
DOI: 10.1016/j.amc.2016.03.027
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().