Unknown input observer design for one-sided Lipschitz discrete-time systems subject to time-delay
Minh Cuong Nguyen and
Hieu Trinh
Applied Mathematics and Computation, 2016, vol. 286, issue C, 57-71
Abstract:
In this paper, we address the problem of unknown input observer design, which simultaneously estimates state and unknown input, of a class of nonlinear discrete-time systems with time-delay. A novel approach to the state estimation problem of nonlinear systems where the nonlinearities satisfy the one-sided Lipschitz and quadratically inner-bounded conditions is proposed. This approach also allows us to reconstruct the unknown inputs of the systems. The nonlinear system is first transformed to a new system which can be decomposed into unknown-input-free and unknown-input-dependent subsystems. The estimation problem is then reduced to designing observer for the unknown-input-free subsystem. Rather than full-order observer design, in this paper, we propose observer design of reduced-order which is more practical and cost effective. By utilizing several mathematical techniques, the time-delay issue as well as the bilinear terms, which often emerge when designing observers for nonlinear discrete-time systems, are handled and less conservative observer synthesis conditions are derived in the linear matrix inequalities form. Two numerical examples are given to show the efficiency and high performance of our results.
Keywords: Simultaneous estimation; Nonlinear systems; One-sided Lipschitz condition; Unknown inputs; Time-delay; Linear matrix inequality (LMI) (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316302454
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:286:y:2016:i:c:p:57-71
DOI: 10.1016/j.amc.2016.04.003
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().