EconPapers    
Economics at your fingertips  
 

Canonical Euler splitting method for nonlinear composite stiff evolution equations

Shoufu Li

Applied Mathematics and Computation, 2016, vol. 289, issue C, 220-236

Abstract: In this paper, a new splitting method, called canonical Euler splitting method (CES), is constructed and studied, which can be used for the efficient numerical solution of general nonlinear composite stiff problems in evolution equations of various type, such as ordinary differential equations (ODEs), semi-discrete unsteady partial differential equations (PDEs) and ordinary or partial Volterra functional differential equations (VFDEs), and can significantly improve the computing speed on the basis of ensuring the computing quality. Stability, consistency and convergence theories of this method are established. A series of numerical experiments are given which check the efficiency of CES method and confirm our theoretical results.

Keywords: Canonical Euler splitting method; Nonlinear composite stiff problems; Evolution equations; Numerical stability and convergence analysis (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316303228
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:289:y:2016:i:c:p:220-236

DOI: 10.1016/j.amc.2016.05.015

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:289:y:2016:i:c:p:220-236