EconPapers    
Economics at your fingertips  
 

Infinitely many homoclinic solutions for a class of subquadratic second-order Hamiltonian systems

Xiang Lv

Applied Mathematics and Computation, 2016, vol. 290, issue C, 298-306

Abstract: In this paper, we mainly consider the existence of infinitely many homoclinic solutions for a class of subquadratic second-order Hamiltonian systems u¨−L(t)u+Wu(t,u)=0, where L(t) is not necessarily positive definite and the growth rate of potential function W can be in (1, 3/2). Using the variant fountain theorem, we obtain the existence of infinitely many homoclinic solutions for the second-order Hamiltonian systems.

Keywords: Homoclinic solutions; Hamiltonian systems; Variational methods (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031630385X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:290:y:2016:i:c:p:298-306

DOI: 10.1016/j.amc.2016.06.014

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:290:y:2016:i:c:p:298-306