EconPapers    
Economics at your fingertips  
 

Extending the applicability of the local and semilocal convergence of Newton’s method

Ioannis K. Argyros and Á. Alberto Magreñán

Applied Mathematics and Computation, 2017, vol. 292, issue C, 349-355

Abstract: We present a local as well a semilocal convergence analysis for Newton’s method in a Banach space setting. Using the same Lipschitz constants as in earlier studies, we extend the applicability of Newton’s method as follows: local case: a larger radius is given as well as more precise error estimates on the distances involved. Semilocal case: the convergence domain is extended; the error estimates are tighter and the information on the location of the solution is at least as precise as before. Numerical examples further justify the theoretical results.

Keywords: Newton’s method; Banach space; Local-semilocal convergence; Kantorovich hypothesis (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316304428
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:292:y:2017:i:c:p:349-355

DOI: 10.1016/j.amc.2016.07.012

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:292:y:2017:i:c:p:349-355