Singularity of Hermitian (quasi-)Laplacian matrix of mixed graphs
Guihai Yu,
Xin Liu and
Hui Qu
Applied Mathematics and Computation, 2017, vol. 293, issue C, 287-292
Abstract:
A mixed graph is obtained from an undirected graph by orienting a subset of its edges. The Hermitian adjacency matrix of a mixed graph M of order n is an n × n matrix H(M)=(hkl), where hkl=−hlk=i (i=−1) if there exists an orientation from vk to vl and hkl=hlk=1 if there exists an edge between vk and vl but not exist any orientation, and hkl=0 otherwise. Let D(M)=diag(d1,d2,…,dn) be a diagonal matrix where di is the degree of vertex vi in the underlying graph Mu. Hermitian matrices L(M)=D(M)−H(M),Q(M)=D(M)+H(M) are said as the Hermitian Laplacian matrix, Hermitian quasi-Laplacian matrix of mixed graph M, respectively. In this paper, it is shown that they are positive semi-definite. Moreover, we characterize the singularity of them. In addition, an expression of the determinant of the Hermitian (quasi-)Laplacian matrix is obtained.
Keywords: Mixed graphs; Hermitian adjacency matrix; Hermitian (quasi-)Laplacian matrix (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316305276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:293:y:2017:i:c:p:287-292
DOI: 10.1016/j.amc.2016.08.032
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().