EconPapers    
Economics at your fingertips  
 

Nonlinear coupled wave propagation in a n-dimensional layer

Yury G. Smirnov and Dmitry V. Valovik

Applied Mathematics and Computation, 2017, vol. 294, issue C, 146-156

Abstract: The paper focuses on the generalization of a nonlinear multi-parameter eigenvalue problem for a system of nonlinear differential equations. The problem is reduced to a system of nonlinear integral equations on a segment. The notion of eigentuple is introduced, the existence of a finite number of isolated eigentuples is proved, and their distribution is described. The corresponding linear multi-parameter eigenvalue problem is studied as well; it is proved that the linear problem has an infinite number of isolated eigentuples. Applications to nonlinear electromagnetic wave propagation theory are demonstrated.

Keywords: Nonlinear multi-parameter eigenvalue problem; Linear multi-parameter eigenvalue problem; Eigentuples; Maxwell’s equations; Nonlinear guided wave; Dispersion equation (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316305719
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:294:y:2017:i:c:p:146-156

DOI: 10.1016/j.amc.2016.09.011

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:294:y:2017:i:c:p:146-156