EconPapers    
Economics at your fingertips  
 

Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform

Michal Pospíšil

Applied Mathematics and Computation, 2017, vol. 294, issue C, 180-194

Abstract: In the present paper, a system of nonhomogeneous linear difference equations with any finite number of constant delays and linear parts given by pairwise permutable matrices is considered. Representation of its solution is derived in a form of a matrix polynomial using the Z-transform. So the recent results for one and two delays, and an inductive formula for multiple delays are unified. The representation is suitable for theoretical as well as practical computations.

Keywords: Discrete system; Z-transform; Multiple delays; Matrix polynomial (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316305793
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:294:y:2017:i:c:p:180-194

DOI: 10.1016/j.amc.2016.09.019

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:294:y:2017:i:c:p:180-194