EconPapers    
Economics at your fingertips  
 

Perturbation bounds of generalized inverses

Lingsheng Meng, Bing Zheng and Peilan Ma

Applied Mathematics and Computation, 2017, vol. 296, issue C, 88-100

Abstract: Let complex matrices A and B have the same sizes. We characterize the generalized inverse matrix B(1, i), called an {1, i}-inverse of B for each i=3 and 4, such that the distance between a given {1, i}-inverse of a matrix A and the set of all {1, i}-inverses of the matrix B reaches minimum under 2-norm (spectral norm) and Frobenius norm. Similar problems are also studied for {1, 2, i}-inverse. In practice, the matrix B is often considered as the perturbed matrix of A, and hence based on the previous results, the additive perturbation bounds for the {1, i}- and {1, 2, i}-inverses and multiplicative perturbation bounds for the {1}-, {1, i}- and {1, 2, i}-inverses are proposed. Numerical examples show that these multiplicative perturbation bounds can be achieved respective under 2-norm and Frobenius norm.

Keywords: Generalized inverses; Additive perturbation bound; Multiplicative perturbation bound; Distance; Optimality (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316306154
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:296:y:2017:i:c:p:88-100

DOI: 10.1016/j.amc.2016.10.017

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:296:y:2017:i:c:p:88-100