Exogenous re-infection does not always cause backward bifurcation in TB transmission dynamics
Oluwaseun Y. Sharomi,
Mohammad A. Safi,
Abba B. Gumel and
David J. Gerberry
Applied Mathematics and Computation, 2017, vol. 298, issue C, 322-335
Abstract:
Models for the transmission dynamics of mycobacterium tuberculosis (TB) that incorporate exogenous re-infection are known to induce the phenomenon of backward bifurcation, a dynamic phenomenon associated with the existence of two stable attractors when the reproduction number of the model is less than unity. This study shows, by way of a counter example, that exogenous re-infection does not always cause backward bifurcation in TB transmission dynamics. In particular, it is shown that it is the transmission ability of the re-infected individuals, and not just the re-infection process, that causes the backward bifurcation phenomenon. When re-infected individuals do not transmit infection, the disease-free equilibrium of the model is shown to be globally-asymptotically stable (GAS) when the associated reproduction number is less than unity. The model has a unique endemic equilibrium whenever the reproduction threshold exceeds unity. It is shown, using a Lyapunov function, that the unique endemic equilibrium is GAS for the special case with no disease-induced mortality and no transmission by re-infected individuals. It is further shown that even if re-infected individuals do transmit infection, backward bifurcation only occurs if their transmissibility exceeds a certain threshold. Sensitivity analyses, with respect to the derived backward bifurcation threshold, show that the phenomenon of backward bifurcation is more likely to occur if the rates of re-infection and transmissibility of re-infected individuals are sufficiently high. Furthermore, it is likely to occur if the fraction of slow progressors (to active TB) is increased or if the rates of treatment (of symptomatic cases) and disease-induced mortality are increased. On the other hand, backward bifurcation is less likely to occur for increasing rates of endogenous re-activation of latent TB cases.
Keywords: Backward bifurcation; Equilibria; Mycobacterium tuberculosis; Reproduction number; Re-infection; Stability (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316306774
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:298:y:2017:i:c:p:322-335
DOI: 10.1016/j.amc.2016.11.009
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().