EconPapers    
Economics at your fingertips  
 

Radiative transfer with delta-Eddington-type phase functions

Weimin Han, Feixiao Long, Wenxiang Cong, Xavier Intes and Ge Wang

Applied Mathematics and Computation, 2017, vol. 300, issue C, 70-78

Abstract: The radiative transfer equation (RTE) arises in a wide variety of applications, in particular, in biomedical imaging applications associated with the propagation of light through the biological tissue. However, highly forward-peaked scattering feature in a biological medium makes it very challenging to numerically solve the RTE problem accurately. One idea to overcome the difficulty associated with the highly forward-peaked scattering is through the use of a delta-Eddington phase function. This paper is devoted to an RTE framework with a family of delta-Eddington-type phase functions. Significance in biomedical imaging applications of the RTE with delta-Eddington-type phase functions are explained. Mathematical studies of the problems include solution existence, uniqueness, and continuous dependence on the problem data: the inflow boundary value, the source function, the absorption coefficient, and the scattering coefficient. Numerical results are presented to show that employing a delta-Eddington-type phase function with properly chosen parameters provides accurate simulation results for light propagation within highly forward-peaked scattering media.

Keywords: Radiative transfer equation; Generalized delta-Eddington phase function; Existence; Uniqueness; Continuous dependence (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316307172
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:300:y:2017:i:c:p:70-78

DOI: 10.1016/j.amc.2016.12.001

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:300:y:2017:i:c:p:70-78