A kind of conditional connectivity of Cayley graphs generated by wheel graphs
Jianhua Tu,
Yukang Zhou and
Guifu Su
Applied Mathematics and Computation, 2017, vol. 301, issue C, 177-186
Abstract:
For a connected graph G=(V,E), a subset F ⊆ V is called an Rk-vertex-cut of G if G−F is disconnected and each vertex in V−F has at least k neighbors in G−F. The cardinality of the minimum Rk-vertex-cut is the Rk-vertex-connectivity of G and is denoted by κk(G). The conditional connectivity is a measure to explore the structure of networks beyond the vertex-connectivity. Let Sym(n) be the symmetric group on {1,2,…,n} and T be a set of transpositions of Sym(n). Denote by G(T) the graph with vertex set {1,2,…,n} and edge set {ij:(ij)∈T}. If G(T) is a wheel graph, then simply denote the Cayley graph Cay(Sym(n),T) by WGn. In this paper, we determine the values of κ1 and κ2 for Cayley graphs generated by wheel graphs and prove that κ1(WGn)=4n−6 and κ2(WGn)=8n−18.
Keywords: Wheel graph; Fault tolerance; Cayley graph; Conditional connectivity (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031630741X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:301:y:2017:i:c:p:177-186
DOI: 10.1016/j.amc.2016.12.015
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().