Extending linear finite elements to quadratic precision on arbitrary meshes
Daniel Duque,
Pep Español and
Jaime Arturo de la Torre
Applied Mathematics and Computation, 2017, vol. 301, issue C, 201-213
Abstract:
The method of finite elements can provide discrete versions of differential operators in general arrangements of nodes. Linear finite elements defined on a triangulation, like Delaunay’s, constitute a typical route towards this aim, as well as being a tool for interpolation. We discuss a procedure to build interpolating functions with quadratic precision from this functional set. The idea is to incorporate (extend) the products of the original functions in order to go from linear precision (the property that linear functions are reconstructed exactly) to quadratic precision (quadratic functions are reconstructed exactly). This procedure is applied to the standard Galerkin approach, in order to study the Poisson problem and the direct evaluation of the Laplacian. We discuss convergence of these problems in 1D and 2D. The extended method is shown to be superior in 2D, featuring convergence for the direct evaluation of the Laplacian in distorted lattices.
Keywords: Finite element method; Quadratic precision; Linear precision; Laplacian (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316307366
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:301:y:2017:i:c:p:201-213
DOI: 10.1016/j.amc.2016.12.010
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().