EconPapers    
Economics at your fingertips  
 

The Crane equation uuxx=−2: The general explicit solution and a case study of Chebyshev polynomial series for functions with weak endpoint singularities

John P. Boyd

Applied Mathematics and Computation, 2017, vol. 301, issue C, 214-223

Abstract: The boundary value problem uuxx=−2 appears in Crane’s theory of laminar convection from a point source. We show that the solution is real only when |x|≤π/2. On this interval, denoting the constants of integration by A and s, the general solution is AV([x−s]/A) where the “Crane function” V is the parameter-free function V=exp(−{erfinv(−[2/π])x}2) and erfinv(z) is the inverse of the error function. V(x) is weakly singular at both endpoints; its Chebyshev polynomial coefficients an decrease proportionally to 1/n3. Exponential convergence can be restored by writing V(x)=∑n=0a2nT2n(z[x]) where the mapping is z=arctanh(x/℧)L2+(arctanh(x/℧))2,℧=π/2. Another option is singular basis functions. V≈(1−x2/℧2){1−0.216log(1−x2/℧2)} has a maximum pointwise error that is less 1/2000 of the maximum of the Crane function.

Keywords: Pseudospectral; Chebyshev polynomials (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316307469
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:301:y:2017:i:c:p:214-223

DOI: 10.1016/j.amc.2016.12.020

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:301:y:2017:i:c:p:214-223