EconPapers    
Economics at your fingertips  
 

Windows for escaping particles in quartic galactic potentials

Juan F. Navarro

Applied Mathematics and Computation, 2017, vol. 303, issue C, 190-202

Abstract: We investigate the shape of the windows through which stars may escape from a galaxy modeled by a bi–symmetrical potential made up of a two–dimensional harmonic oscillator with quartic perturbing terms. The escape from the potential well is governed by the unstable periodic orbits in the openings of the potential. The unstable and stable manifolds to these periodic orbits reveal the way test particles escape from the potential well. Our main objective is to compute accurately these manifolds to analyze the shapes and sizes of the windows of escape, founding that they consist of a “main window” and of a hierarchy of secondary spiral windows. We have also found that the shape and the way this hierarchy is constructed depend on the energy of the system. This study is performed through the analysis of intersections of stable and unstable manifolds in the x−x˙ Poincaré phase plane.

Keywords: Galactic potentials; Periodic orbits; Escapes; Hamiltonian systems (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317300541
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:303:y:2017:i:c:p:190-202

DOI: 10.1016/j.amc.2017.01.040

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:303:y:2017:i:c:p:190-202