EconPapers    
Economics at your fingertips  
 

Markov chains with memory, tensor formulation, and the dynamics of power iteration

Sheng-Jhih Wu and Moody T. Chu

Applied Mathematics and Computation, 2017, vol. 303, issue C, 226-239

Abstract: A Markov chain with memory is no different from the conventional Markov chain on the product state space. Such a Markovianization, however, increases the dimensionality exponentially. Instead, Markov chain with memory can naturally be represented as a tensor, whence the transitions of the state distribution and the memory distribution can be characterized by specially defined tensor products. In this context, the progression of a Markov chain can be interpreted as variants of power-like iterations moving toward the limiting probability distributions. What is not clear is the makeup of the “second dominant eigenvalue” that affects the convergence rate of the iteration, if the method converges at all. Casting the power method as a fixed-point iteration, this paper examines the local behavior of the nonlinear map and identifies the cause of convergence or divergence. As an application, it is found that there exists an open set of irreducible and aperiodic transition probability tensors where the Z-eigenvector type power iteration fails to converge.

Keywords: Markov chain with memory; Transition probability tensor; Stationary distribution; Power method; Rate of convergence; Second dominant eigenvalue (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317300383
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:303:y:2017:i:c:p:226-239

DOI: 10.1016/j.amc.2017.01.030

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-05
Handle: RePEc:eee:apmaco:v:303:y:2017:i:c:p:226-239