EconPapers    
Economics at your fingertips  
 

Resolution of subgrid microscale interactions enhances the discretisation of nonautonomous partial differential equations

J.E. Bunder and A.J. Roberts

Applied Mathematics and Computation, 2017, vol. 304, issue C, 164-179

Abstract: Coarse grained, macroscale, spatial discretisations of nonlinear nonautonomous partial differential/difference equations are given novel support by centre manifold theory. Dividing the physical domain into overlapping macroscale elements empowers the approach to resolve significant subgrid microscale structures and interactions between neighbouring elements. The crucial aspect of this approach is that centre manifold theory organises the resolution of the detailed subgrid microscale structure interacting via the nonlinear dynamics within and between neighbouring elements. The techniques and theory developed here may be applied to soundly discretise on a macroscale many dissipative nonautonomous partial differential/difference equations, such as the forced Burgers’ equation, adopted here as an illustrative example.

Keywords: Nonlinear nonautonomous PDEs; Spatial discretisation; Nonautonomous slow manifold; Multiscale modelling; Closure; Coarse graining (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317300747
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:304:y:2017:i:c:p:164-179

DOI: 10.1016/j.amc.2017.01.056

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:304:y:2017:i:c:p:164-179