EconPapers    
Economics at your fingertips  
 

Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusion-wave equation

Leilei Wei

Applied Mathematics and Computation, 2017, vol. 304, issue C, 180-189

Abstract: In this paper a finite difference/local discontinuous Galerkin method for the fractional diffusion-wave equation is presented and analyzed. We first propose a new finite difference method to approximate the time fractional derivatives, and give a semidiscrete scheme in time. Further we develop a fully discrete scheme for the fractional diffusion-wave equation, and prove that the method is unconditionally stable and convergent with order O(hk+1+(Δt)3−α), where k is the degree of piecewise polynomial. Extensive numerical examples are carried out to confirm the theoretical convergence rates.

Keywords: Fractional diffusion-wave equation; Time fractional derivative; Local discontinuous Galerkin method; Stability (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317300723
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:304:y:2017:i:c:p:180-189

DOI: 10.1016/j.amc.2017.01.054

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:304:y:2017:i:c:p:180-189