EconPapers    
Economics at your fingertips  
 

A porous thermoelastic problem: An a priori error analysis and computational experiments

J.R. Fernández and M. Masid

Applied Mathematics and Computation, 2017, vol. 305, issue C, 117-135

Abstract: In this paper, a porous thermoelastic problem is numerically considered. The variational formulation is written as a coupled system of two hyperbolic equations for the displacement and the porosity fields and a parabolic equation for the temperature field. An existence and uniqueness result as well as an energy decay property are recalled. Then, fully discrete approximations are introduced by using the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the first-order time derivatives. A priori error estimates are proved, from which the linear convergence is deduced under some additional regularity conditions. Finally, some one- and two-dimensional numerical simulations are presented to show the accuracy of the approximation and the behavior of the solution.

Keywords: Thermoelasticity; Porosity; Finite element approximations; Error estimates; Numerical simulations (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317300966
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:305:y:2017:i:c:p:117-135

DOI: 10.1016/j.amc.2017.01.070

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:305:y:2017:i:c:p:117-135