Kernel-based adaptive approximation of functions with discontinuities
Licia Lenarduzzi and
Robert Schaback
Applied Mathematics and Computation, 2017, vol. 307, issue C, 113-123
Abstract:
One of the basic principles of Approximation Theory is that the quality of approximations increase with the smoothness of the function to be approximated. Functions that are smooth in certain subdomains will have good approximations in those subdomains, and these sub-approximations can possibly be calculated efficiently in parallel, as long as the subdomains do not overlap. This paper proposes an algorithm that first calculates sub-approximations on non-overlapping subdomains, then extends the subdomains as much as possible and finally produces a global solution on the given domain by letting the subdomains fill the whole domain. Consequently, there will be no Gibbs phenomenon along the boundaries of the subdomains. The method detects faults and gradient faults with good accuracy. Throughout, the algorithm works for fixed scattered input data of the function itself, not on spectral data, and it does not resample.
Keywords: Kernels; Classification; Localized approximation; Adaptivity; scattered data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317301546
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:307:y:2017:i:c:p:113-123
DOI: 10.1016/j.amc.2017.02.043
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().