EconPapers    
Economics at your fingertips  
 

Proper distance in edge-colored hypercubes

Eddie Cheng, Colton Magnant and Dhruv Medarametla

Applied Mathematics and Computation, 2017, vol. 313, issue C, 384-391

Abstract: An edge-colored path is called properly colored if no two consecutive edges have the same color. An edge-colored graph is called properly connected if, between every pair of vertices, there is a properly colored path. Moreover, the proper distance between vertices u and v is the length of the shortest properly colored path from u to v. Given a particular class of properly connected colorings of the hypercube, we consider the proper distance between pairs of vertices in the hypercube.

Keywords: Edge-coloring; Proper connection; Hypercube (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317303776
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:313:y:2017:i:c:p:384-391

DOI: 10.1016/j.amc.2017.05.065

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:313:y:2017:i:c:p:384-391