EconPapers    
Economics at your fingertips  
 

A meshless symplectic algorithm for nonlinear wave equation using highly accurate RBFs quasi-interpolation

Shengliang Zhang, Yu Yang and Hongqiang Yang ()

Applied Mathematics and Computation, 2017, vol. 314, issue C, 110-120

Abstract: This study suggests a high-order meshless symplecitc algorithm for Hamiltonian wave equation by using highly accurate radial basis functions (RBFs) quasi-interpolation operator. The method does not require solving a resultant full matrix and possesses a high order accuracy compared with existing numerical methods. We also present a theoretical framework to show the conservativeness and convergence of the proposed symplectic method. As the numerical experiments shown, it not only offers a high order accuracy but also has a good property of long-time tracking capability.

Keywords: Radial basis functions; High-order quasi-interpolation; Symplectic integrator; Hamiltonian PDEs (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317304617
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:314:y:2017:i:c:p:110-120

DOI: 10.1016/j.amc.2017.07.010

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:314:y:2017:i:c:p:110-120