EconPapers    
Economics at your fingertips  
 

Algebraic construction and numerical behavior of a new s-consistent difference scheme for the 2D Navier–Stokes equations

Pierluigi Amodio, Yuri Blinkov, Vladimir Gerdt and Roberto La Scala

Applied Mathematics and Computation, 2017, vol. 314, issue C, 408-421

Abstract: In this paper, we consider a regular grid with equal spatial spacings and construct a new finite difference approximation (difference scheme) for the system of two-dimensional Navier–Stokes equations describing the unsteady motion of an incompressible viscous liquid of constant viscosity. In so doing, we use earlier constructed discretization of the system of three equations: the continuity equation and the proper Navier–Stokes equations. Then, we compute the canonical Gröbner basis form for the obtained discrete system. It gives one more difference equation which is equivalent to the pressure Poisson equation modulo difference ideal generated by the Navier–Stokes equations, and thereby comprises a new finite difference approximation (scheme). We show that the new scheme is strongly consistent. Besides, our computational experiments demonstrate much better numerical behavior of the new scheme in comparison with the other strongly consistent schemes we constructed earlier and with the scheme which is not strongly consistent.

Keywords: Difference algebra; Gröbner bases; 2D Navier–Stokes equations; Finite difference method; Strong consistency (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317304502
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:314:y:2017:i:c:p:408-421

DOI: 10.1016/j.amc.2017.06.037

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:314:y:2017:i:c:p:408-421