Influences of autapse and channel blockage on multiple coherence resonance in a single neuron
Rukiye Uzun
Applied Mathematics and Computation, 2017, vol. 315, issue C, 203-210
Abstract:
We study how the spiking regularity of a single stochastic Hodgkin–Huxley neuron is effected in the presence of ion channel blocking and autaptic connection. In this study, we consider a chemical autapse expressed by its coupling strength and delay time. It is found that the neuron exhibits multiple coherence resonance (MCR) behavior induced by autaptic time delay at an appropriate level of ion channel blocking and autaptic coupling strength. This MCR behavior increases with the decrement of working potassium ion channels, whereas it decreases or completely disappears with the increment of a fraction of sodium ion channels blocking, regardless of autaptic coupling strength. Furthermore, this behavior is more explicit at intermediate autaptic coupling strength regardless of the ion channel blocking type. We briefly discuss the obtained results with the underlying reasons in terms of ion channel blocking type and autapse parameters. We also showed that ion channel noise, thus membrane patch size, should be at an optimal level to obtain MCR behavior otherwise, this behavior would be destroyed. The obtained results also showed that autaptic time delay is more operative on regularity than its coupling strength regardless of ion channel blocking. Considering the importance of spiking regularity on neuronal information processing, our results may help to understand the intersection of ion channel blocking and autaptic connections of a single neuron.
Keywords: Autapse; Channel blocking; Multiple coherence resonance (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317305167
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:315:y:2017:i:c:p:203-210
DOI: 10.1016/j.amc.2017.07.055
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().