EconPapers    
Economics at your fingertips  
 

A robust numerical method for a fractional differential equation

Zhongdi Cen, Anbo Le and Aimin Xu

Applied Mathematics and Computation, 2017, vol. 315, issue C, 445-452

Abstract: This paper is devoted to giving a rigorous numerical analysis for a fractional differential equation with order α ∈ (0, 1). First the fractional differential equation is transformed into an equivalent Volterra integral equation of the second kind with a weakly singular kernel. Based on the apriori information about the exact solution, an integral discretization scheme on an apriori chosen adapted mesh is proposed. By applying the truncation error estimate techniques and a discrete analogue of Gronwall’s inequality, it is proved that the numerical method is first-order convergent in the discrete maximum norm. Numerical results indicate that this method is more accurate and robust than finite difference methods when α is close to 0.

Keywords: Fractional differential equation; Caputo fractional derivative; Volterra integral equation; Adapted mesh; Convergence analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317305623
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:315:y:2017:i:c:p:445-452

DOI: 10.1016/j.amc.2017.08.011

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:445-452