EconPapers    
Economics at your fingertips  
 

Multigrid method based on a space-time approach with standard coarsening for parabolic problems

Sebastião Romero Franco, Francisco José Gaspar, Marcio Augusto Villela Pinto and Carmen Rodrigo

Applied Mathematics and Computation, 2018, vol. 317, issue C, 25-34

Abstract: In this work, a space-time multigrid method which uses standard coarsening in both temporal and spatial domains and combines the use of different smoothers is proposed for the solution of the heat equation in one and two space dimensions. In particular, an adaptive smoothing strategy, based on the degree of anisotropy of the discrete operator on each grid-level, is the basis of the proposed multigrid algorithm. Local Fourier analysis is used for the selection of the crucial parameter defining such an adaptive smoothing approach. Central differences are used to discretize the spatial derivatives and both implicit Euler and Crank–Nicolson schemes are considered for approximating the time derivative. For the solution of the second-order scheme, we apply a double discretization approach within the space-time multigrid method. The good performance of the method is illustrated through several numerical experiments.

Keywords: Space-time multigrid; Local Fourier analysis; Parabolic partial differential equations; Double discretization (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317305945
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:317:y:2018:i:c:p:25-34

DOI: 10.1016/j.amc.2017.08.043

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:317:y:2018:i:c:p:25-34