A nonsmooth regularization approach based on shearlets for Poisson noise removal in ROI tomography
Tatiana A. Bubba,
Federica Porta,
Gaetano Zanghirati and
Silvia Bonettini
Applied Mathematics and Computation, 2018, vol. 318, issue C, 131-152
Abstract:
Due to its potential to lower exposure to X-ray radiation and reduce the scanning time, region-of-interest (ROI) computed tomography (CT) is particularly appealing for a wide range of biomedical applications. To overcome the severe ill-posedness caused by the truncation of projection measurements, ad hoc strategies are required, since traditional CT reconstruction algorithms result in instability to noise, and may give inaccurate results for small ROI. To handle this difficulty, we propose a nonsmooth convex optimization model based on ℓ1 shearlet regularization, whose solution is addressed by means of the variable metric inexact line search algorithm (VMILA), a proximal-gradient method that enables the inexact computation of the proximal point defining the descent direction. We compare the reconstruction performance of our strategy against a smooth total variation (sTV) approach, by using both Poisson noisy simulated data and real data from fan-beam CT geometry. The results show that, while for synthetic data both shearets and sTV perform well, for real data, the proposed nonsmooth shearlet-based approach outperforms sTV, since the localization and directional properties of shearlets allow to detect finer structures of a textured image. Finally, our approach appears to be insensitive to the ROI size and location.
Keywords: Computed tomography; Region-of-interest tomography; Shearlets; Wavelets; Forward-backward algorithms; Nonsmooth optimization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317306215
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:318:y:2018:i:c:p:131-152
DOI: 10.1016/j.amc.2017.09.001
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().