EconPapers    
Economics at your fingertips  
 

Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm

Marco Cococcioni, Massimo Pappalardo and Yaroslav D. Sergeyev

Applied Mathematics and Computation, 2018, vol. 318, issue C, 298-311

Abstract: Numerous problems arising in engineering applications can have several objectives to be satisfied. An important class of problems of this kind is lexicographic multi-objective problems where the first objective is incomparably more important than the second one which, in its turn, is incomparably more important than the third one, etc. In this paper, Lexicographic Multi-Objective Linear Programming (LMOLP) problems are considered. To tackle them, traditional approaches either require solution of a series of linear programming problems or apply a scalarization of weighted multiple objectives into a single-objective function. The latter approach requires finding a set of weights that guarantees the equivalence of the original problem and the single-objective one and the search of correct weights can be very time consuming. In this work a new approach for solving LMOLP problems using a recently introduced computational methodology allowing one to work numerically with infinities and infinitesimals is proposed. It is shown that a smart application of infinitesimal weights allows one to construct a single-objective problem avoiding the necessity to determine finite weights. The equivalence between the original multi-objective problem and the new single-objective one is proved. A simplex-based algorithm working with finite and infinitesimal numbers is proposed, implemented, and discussed. Results of some numerical experiments are provided.

Keywords: Multi-objective optimization; Lexicographic problems; Numerical infinitesimals; Grossone infinity computing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317303703
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:318:y:2018:i:c:p:298-311

DOI: 10.1016/j.amc.2017.05.058

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:318:y:2018:i:c:p:298-311