EconPapers    
Economics at your fingertips  
 

An index-aware parametric model order reduction method for parameterized quadratic differential–algebraic equations

Nicodemus Banagaaya, Peter Benner, Lihong Feng, Peter Meuris and Wim Schoenmaker

Applied Mathematics and Computation, 2018, vol. 319, issue C, 409-424

Abstract: Modeling of sophisticated applications, such as coupled problems arising from nanoelectronics can lead to quadratic differential algebraic equations (DAEs). The quadratic DAEs may also be parameterized, due to variations in material properties, system configurations, etc., and they are usually subject to multi-query tasks, such as optimization, or uncertainty quantification. Model order reduction (MOR), specifically parametric model order reduction (pMOR), is known as a useful tool for accelerating the simulations in a multi-query context. However, pMOR dedicated to this particular structure, has not yet been systematically studied. Directly applying the existing pMOR methods may produce parametric reduced-order models (pROMs) which are less accurate, or may be very difficult to simulate. The same problem was already observed for linear DAEs, and could be eliminated by introducing splitting MOR techniques such as the index-aware MOR (IMOR) methods. We extend the IMOR methods to parameterized quadratic DAEs, thereby producing accurate and easy to simulate index-aware parametric reduced-order models (IpROMs). The proposed approach is so far limited to index-1 one-way coupled problems, but these often appear in computational nanoelectronics. We illustrate the performance of the new approach using industrial models for nanoelectronic structures.

Keywords: Model order reduction; Quadratic differential–algebraic equations; Tractability index (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031730276X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:319:y:2018:i:c:p:409-424

DOI: 10.1016/j.amc.2017.04.024

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:319:y:2018:i:c:p:409-424