EconPapers    
Economics at your fingertips  
 

Difference methods for parabolic equations with Robin condition

Lucjan Sapa

Applied Mathematics and Computation, 2018, vol. 321, issue C, 794-811

Abstract: Classical solutions of nonlinear second-order partial differential functional equations of parabolic type with the Robin condition are approximated in the paper by solutions of associated boundedness-preserving implicit difference functional equations. It is proved that the discrete solutions uniquely exist, they are uniformly bounded with respect to meshes and the numerical method is convergent and stable. We also find the error estimate and its asymptotic behavior. The properties of some auxiliary nonlinear discrete recurrent equations are showed. The proofs are based on the comparison technique and the Banach fixed-point theorem.

Keywords: Parabolic differential functional equation; Implicit difference method; Recurrent equation; Estimate of solution; Convergence; Stability (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317307701
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:321:y:2018:i:c:p:794-811

DOI: 10.1016/j.amc.2017.10.061

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:321:y:2018:i:c:p:794-811