EconPapers    
Economics at your fingertips  
 

Cospectrality of graphs with respect to distance matrices

Mustapha Aouchiche and Pierre Hansen

Applied Mathematics and Computation, 2018, vol. 325, issue C, 309-321

Abstract: The distance, distance Laplacian and distance signless Laplacian spectra of a connected graph G are the spectra of the distance, distance Laplacian and distance signless Laplacian matrices of G. Two graphs are said to be cospectral with respect to the distance (resp. distance Laplacian or distance signless Laplacian) matrix if they share the same distance (resp. distance Laplacian or distance signless Laplacian) spectrum. If a graph G does not share its spectrum with any other graph, we say G is determined by its spectrum. In this paper we are interested in the cospectrality with respect to the three distance matrices. First, we report on a numerical study in which we looked into the spectra of the distance, distance Laplacian and distance signless Laplacian matrices of all the connected graphs on up to 10 vertices. Then, we prove some theoretical results about what we can deduce about a graph from these spectra. Among other results we identify some of the graphs determined by their distance Laplacian or distance signless Laplacian spectra.

Keywords: Distance matrices; Laplacian; Signless Laplacian; Cospectrality; Spectra; Graph (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317308846
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:325:y:2018:i:c:p:309-321

DOI: 10.1016/j.amc.2017.12.025

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-17
Handle: RePEc:eee:apmaco:v:325:y:2018:i:c:p:309-321