EconPapers    
Economics at your fingertips  
 

On bivariate classical orthogonal polynomials

Francisco Marcellán, Misael Marriaga, Teresa E. Pérez and Miguel A. Piñar

Applied Mathematics and Computation, 2018, vol. 325, issue C, 340-357

Abstract: We deduce new characterizations of bivariate classical orthogonal polynomials associated with a quasi-definite moment functional, and we revise old properties for these polynomials. More precisely, new characterizations of classical bivariate orthogonal polynomials satisfying a diagonal Pearson-type equation are proved: they are solutions of two separate partial differential equations one for every partial derivative, their partial derivatives are again orthogonal, and every vector polynomial can be expressed in terms of its partial derivatives by means of a linear relation involving only three terms of consecutive total degree. Moreover, we study general solutions of the matrix second order partial differential equation satisfied by classical orthogonal polynomials, and we deduce the explicit expressions for the matrix coefficients of the structure relation. Finally, some illustrative examples are given.

Keywords: Orthogonal polynomials in two variables; Matrix Pearson-type equations; Matrix partial differential equations (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300317309074
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:325:y:2018:i:c:p:340-357

DOI: 10.1016/j.amc.2017.12.040

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:325:y:2018:i:c:p:340-357