EconPapers    
Economics at your fingertips  
 

Galerkin methods for the Davey–Stewartson equations

Yali Gao, Liquan Mei and Rui Li

Applied Mathematics and Computation, 2018, vol. 328, issue C, 144-161

Abstract: In this paper, we propose two Galerkin methods to investigate the evolution of the Davey–Stewartson equations. The extrapolated Crank–Nicolson scheme and decoupled semi-implicit multistep scheme are employed to increase the order of the time discrete accuracy, which only requires the solutions of a linear system at each time step. Four numerical experiments are presented to illustrate the features of the proposed numerical methods, such as the optimal convergence order, the conservation variable and the application in rogue waves.

Keywords: Davey–Stewartson equations; Galerkin finite element method; Extrapolated Crank–Nicolson method; Explicit multistep method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318300675
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:328:y:2018:i:c:p:144-161

DOI: 10.1016/j.amc.2018.01.044

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:328:y:2018:i:c:p:144-161