EconPapers    
Economics at your fingertips  
 

Semi-implicit second order schemes for numerical solution of level set advection equation on Cartesian grids

Peter Frolkovič and Karol Mikula

Applied Mathematics and Computation, 2018, vol. 329, issue C, 129-142

Abstract: A new parametric class of semi-implicit numerical schemes for a level set advection equation on Cartesian grids is derived and analyzed. An accuracy and a stability study is provided for a linear advection equation with a variable velocity using partial Lax–Wendroff procedure and numerical von Neumann stability analysis. The obtained semi-implicit κ-scheme is 2nd order accurate in space and time in any dimensional case when using a dimension by dimension extension of the one-dimensional scheme that is not the case for analogous fully explicit or fully implicit κ-schemes. A further improvement is obtained by using so-called Corner Transport Upwind extension in two-dimensional case. The extended semi-implicit κ-scheme with a specific (velocity dependent) value of κ is 3rd order accurate in space and time for a constant advection velocity, and it is unconditional stable according to the numerical von Neumann stability analysis for the linear advection equation in general.

Keywords: Advection equation; Finite difference method; Cartesian grid; Lax–Wendroff procedure; von Neumann stability analysis (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318300948
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:329:y:2018:i:c:p:129-142

DOI: 10.1016/j.amc.2018.01.065

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:129-142