EconPapers    
Economics at your fingertips  
 

Burst ratio in the finite-buffer queue with batch Poisson arrivals

Andrzej Chydzinski, Dominik Samociuk and Blazej Adamczyk

Applied Mathematics and Computation, 2018, vol. 330, issue C, 225-238

Abstract: We study the burst ratio in the queueing system with finite buffer and batch arrivals. The study is motivated by computer networking, in which packet losses occur due to queueing mechanisms and buffer overflows. First, we derive the formula for the burst ratio in the case of compound Poisson arrivals, general distribution of the service time and general distribution of the batch size. Then, we study its asymptotic behavior, as the buffer size grows to infinity. Using the obtained analytical solutions, we present several numerical examples with various batch size distributions, service time distributions, buffer sizes and system loads. Finally, we compare the computed burst ratios with values obtained in simulations.

Keywords: Queueing system; Batch arrivals; Networking; Packet losses; Burst ratio (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318301231
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:330:y:2018:i:c:p:225-238

DOI: 10.1016/j.amc.2018.02.021

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:225-238