EconPapers    
Economics at your fingertips  
 

Laplacian integrality in P4-sparse and P4-extendible graphs

Renata R. Del-Vecchio and Átila Arueira Jones

Applied Mathematics and Computation, 2018, vol. 330, issue C, 307-315

Abstract: Let G be a simple graph and L=L(G) the Laplacian matrix of G. G is called L-integral if all its Laplacian eigenvalues are integer numbers. It is known that every cograph, a graph free of P4, is L-integral. The class of P4-sparse graphs and the class of P4-extendible graphs contain the cographs. It seems natural to investigate if the graphs in these classes are still L-integral. In this paper we characterized the L-integral graphs for both cases, P4-sparse graphs and P4-extendible graphs.

Keywords: Spider graph; P4-sparse graph; P4-extendible graph; L-integral graph (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318301565
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:330:y:2018:i:c:p:307-315

DOI: 10.1016/j.amc.2018.02.046

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:330:y:2018:i:c:p:307-315