EconPapers    
Economics at your fingertips  
 

Stability and error estimates of a new high-order compact ADI method for the unsteady 3D convection–diffusion equation

Kun Wang and Hongyue Wang

Applied Mathematics and Computation, 2018, vol. 331, issue C, 140-159

Abstract: In this paper, a new high-order compact ADI method for the unsteady convection–diffusion equation in three dimension(3D) is considered. Collecting the truncation error of the finite difference operator by the recursion method, we derive a new high-order compact finite difference scheme for the unsteady 1D convection–diffusion equation firstly. Then, based on the ADI method, applying a correction technique to reduce the error of the splitting term, a high-order compact ADI method for the unsteady 3D convection–diffusion equation is proposed, in which we solve a series of 1D problems with strictly diagonal dominant tri-diagonal structures instead of the high-dimensional ones. The scheme is proved to be unconditional stable. Moreover, the regularity and error estimate of the numerical solution are derived. Finally, some numerical examples are performed, which confirm the theoretical prediction and show that much better computational accuracy results can be got by applying the new scheme.

Keywords: Convection–diffusion equation; Finite difference method; ADI method; Stability analysis; Error estimate (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318301632
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:331:y:2018:i:c:p:140-159

DOI: 10.1016/j.amc.2018.02.053

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:331:y:2018:i:c:p:140-159