EconPapers    
Economics at your fingertips  
 

A well-balanced element-free Galerkin method for the nonlinear shallow water equations

Xu-hua Yuan

Applied Mathematics and Computation, 2018, vol. 331, issue C, 46-53

Abstract: In this paper, we consider the nonlinear shallow water equations over variable bottom topography in one dimension and propose a well-balanced element-free Galerkin method for solving this system. The proposed scheme has the features of being high-order accurate for general solutions and exactly preserving the still-water stationary solution. The main ingredient to achieve the well-balanced property is to use a special decomposition to the source term and discretize the source term as the flux term. Numerical tests are presented to illustrate the accuracy and validity of the proposed scheme.

Keywords: Element-free Galerkin method; Moving least square approximation; Nonlinear shallow water equations; High-order accuracy; Well-balanced scheme (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318300900
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:331:y:2018:i:c:p:46-53

DOI: 10.1016/j.amc.2018.01.061

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:331:y:2018:i:c:p:46-53