EconPapers    
Economics at your fingertips  
 

The total bondage numbers and efficient total dominations of vertex-transitive graphs

Fu-Tao Hu, Lu Li and Jia-Bao Liu

Applied Mathematics and Computation, 2018, vol. 332, issue C, 35-41

Abstract: The total domination number of a graph G without isolated vertices is the minimum number of vertices that dominate all vertices in G. The total bondage number of G is the minimum number of edges whose removal enlarges the total domination number. In this paper, we establish a tight lower bound for the total bondage number of a vertex-transitive graph. We also obtain upper bounds for regular graphs by investigating the relation between the total bondage number and the efficient total domination. As applications, we study the total bondage numbers for some circulant graphs and toroidal meshes by characterizing the existence of efficient total dominating sets in these graphs.

Keywords: Total dominating set; Efficient total dominating set; Total bondage number; Vertex-transitive graphs (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318302194
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:332:y:2018:i:c:p:35-41

DOI: 10.1016/j.amc.2018.03.046

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:332:y:2018:i:c:p:35-41